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The present paper considers the problem on the calculation of the heat flux from a uniformly heated spherical
particle at arbitrary values of the Knudsen number with allowance for the energy accommodation effect. The
results of numerical calculations of the BGK model of the collision integral are presented.

The investigation of the process of heat transfer in the intermediate range of values of the Knudsen number
is of great theoretical and practical importance. This phenomenon is used, in particular, to determine the character of
the gas–solid-surface interaction and calculate the accommodation coefficients. A fairly detailed review of publications
on this question is given in [1, 2]. Their authors, however, restrict themselves to approximate methods, which do not
give the real temperature distribution and gas molecular concentration. In [3–6], a direct numerical solution of the ki-
netic equation under the condition of complete energy accommodation is carried out. Moreover, the above method re-
quires considerable resources of computer facilities, which limits its use in processing experimental results. In the
present paper, the energy-accommodation effect is taken into account and a different method is proposed for solving
the kinetic equation, which permits obtaining the desirable accuracy at a considerably smaller expenditure of computer
time. The proposed method assumes apparent generalization to the case of more complex problems of physical kinetics
and can find application in other fields of mathematical physics.

Consider a spherical particle of radius R uniformly heated to temperature Tw and situated in a gas in which
the temperature T0 is held constant at infinity.

We introduce a spherical system of coordinates with origin at the center of the particle. The state of the gas
surrounding it is described by the equation [7]
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where ϕ is the correction to the equilibrium distribution function

f0 = n0 


m
2πkT0





3 ⁄ 2
 exp (− C

2) ;

C = V √m ⁄ 2kT0 , V is the thermal velocity of the gas molecules; I[ϕ] is the integral collision operator.
As the boundary condition on the particle surface, we take the law of diffuse reflection of gas molecules from

its surface with the Maxwell distribution function

ϕ Cr>0,r=R = Φr = 
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 + 
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 , (2)

corresponding to the temperature Tr and molecular concentration nr determined by the requirement on the absence of
the mass gas flow
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∫ Crϕ exp (− C
2) d3

C = 0 (3)

and the character of energy accommodation

αe = 
Ei − Er

Ei − Ew
 , (4)

where

Ei = − π−3 ⁄ 2   ∫ 
Cr<0

  CrC
2ϕ (R) exp (− C

2) d3
C (5)

is the dedimensionalized value of the energy brought by the incident molecules

Er = π−3 ⁄ 2   ∫ 
Cr>0

  CrC
2Φr exp (− C

2) d3
C (6)

and carried away by the molecules reflected from the particle;

Ew = π−3 ⁄ 2   ∫ 
Cr>0

  CrC
2Φw exp (− C

2) d3
C

corresponds to the energy which would be carried away by molecules if they were reflected with temperature Tw.
By virtue of the linearity of the problem the solution of Eq. (1) can be given in the form

ϕ = 
∆Tr

T0
 ϕ∗  .

Here and hereafter we agree to mark with an asterisk the quantities assigned to ∆Tr
 ⁄ T0 or, which is equivalent, those

calculated at ∆Tr = T0.
As a result, from (3), (5), and (6) we obtain
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Analogously,
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Substituting the expressions obtained into condition (4), we find

∆Tr

T0
 = 

αe

1 + (1 − αe) (I1 − 2I0)
 
∆Tw

T0
 . (8)

The sought heat flux is determined by the relation

662



q = n0 √2k
3
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 ∫ CrC
2ϕ exp (− C

2) d3
C

and, by virtue of the energy conservation law, it can be given in the form

q = n0 √2k
3
T0

3

m
 
R

2

r
2

 Q .

The dimensionless quantity Q can be calculated at any point, in particular, on the particle surface, which yields

Q = Er − Ei = 
1 − 2I0 + I1

√π
 
∆Tr

T0

 . (9)

The quantity

Q
∗
 = 

1 − 2I0 + I1

√π

(10)

can be considered as the dedimensionalized value of the heat flux calculated in the case of complete accommodation
of energy at ∆Tw = T0.

Taking into account (10), relations (8) and (9) can be given in the form
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∗
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 ,   Q = Q
∗
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∗
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∆Tw
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 .

It should be noted that this result depends neither on the form of the collision integral nor on the method of solving
the problem under consideration.

It is also obvious that in the free-molecular regime the influence of the particle on the molecule distribution
function in the gas volume can be neglected, and the function ϕ∗  in the integration domain (7) and the integrals them-
selves can be assumed to be equal to zero. Thus, within the limit of R → 0,

Q
∗
 = 

1

√π
 .

In the case of a large particle, the distribution function of molecules incident on the particle is described by
the Chapman–Enskog distribution, which yields

Q
∗
 = 

κ

Rn0

 √m2k
3
T0

and leads to the known gas-dynamic solution

q = κ 
R

r
2
 ∆Tw .

To calculate Q∗  in the intermediate range of values of the Knudsen number, it is necessary to solve Eq. (1).
Passing to the new variable
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µ = 
(C⋅r)
Cr

and representing the collision operator in the form

I [ϕ] = F − νϕ ,

which, as is known, is possible in the case of potentials of intermolecular interaction with a limited range of action,
as well as for model equations, we obtain

µ 
∂ϕ
∂r

 + 
1 − µ2

r
 
∂ϕ
∂µ

 = 
F − νϕ

C
 . (11)

To solve this equation, the authors of [4–6] use an iteration method analogous to that described in [3]. In so doing,
they use, as the distribution function entering into the integral part of the collision operator, the values obtained at a
previous iteration step. In other words, at each step the function F is assumed to be given and the problem is reduced
to the numerical solution of the corresponding differential equation.

It is obvious that with such an approach Eq. (11) admits an analytical solution. Indeed, consider the system
of characteristic equations

dr

µ
 = 

rdµ

1 − µ2 = 
Cdϕ

F − νϕ
 .

The first equality

dr

µ
 = 

rdµ

1 − µ2

is solved trivially and yields the equation of the characteristic 

K1 = r √ 1 − µ2  . (12)

As the second equation, consider

dr
µ

 = 
Cdϕ

F − νϕ
 .

Substituting into this equation the value found from (12)

µ = % √ 1 − K1
2 ⁄ r2  ,

we obtain

C sign (µ) √1 − 
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2

r
2  

dϕ

dr
 = F − νϕ .

Hence we find
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 + 
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C

 ∫ 
R
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ν
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 ×
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× F  r1, sign (µ) √ 1 − K1
2 ⁄ r1

2    
r1dr1

√r1
2 − K1

2
 . (13)

The arguments of the function F mean that in calculating it, it is necessary to take, as r and µ, r1 and sign (µ)
√1 − K1

2 ⁄ r1
2 , respectively.

To definitively determine the sought solution, it is necessary to give the boundary conditions. Obviously, re-
lation (2) gives the value of the distribution function inside the cone of influence of the particle, i.e., for
µ > √1 − R2 ⁄ r2 . Moreover, the sought solution should satisfy the finiteness condition at r → ∞. And, as seen from the
structure given by (13), at µ > 0 this requirement is met automatically. Therefore, to determine the distribution in the
region of 0 < µ < √1 − R2 ⁄ r2 , one should use the continuity condition at µ = 0.

The solution of Eq. (11) satisfying the above requirements is described by the function

ϕ = ϕ1H1 + ϕ2H2 + ϕ3H3 , (14)

where
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 , (15)
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 , (16)
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R
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r
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r1dr1

√r1
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 , (17)

H1 = H(−µ), H3 = H(µ − √ 1 − R2 ⁄ r2) , H2 = 1 − H1 − H3, H(x) = 
 x  + x

2x
 is the standard Heaviside function.

Thus, the problem is reduced to the system of integral equations (15)–(17), for whose solution any numerical
method can be used.

For a particular analysis, we restrict ourselves to the BGK model of the collision integral [8], which corre-
sponds to

F = ν  ∑ 

i=1

3

 Pi (C, µ) Mi ,   ν = 
5n0

κ
 √ k

3
T0

8m
 ,
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Mi = π−3 ⁄ 2 ∫ Piϕ exp (− C
2) d3

C . (18)

P1 = 1 ,   P2 = √ 2
3

 

C

2
 − 

3
2



 ,   P3 = √2  Cµ .

The choice of the above model is of particular interest, since it permits comparison with the analytical results
obtained in limiting cases and makes it possible to determine the accuracy of the known approximate methods of solv-
ing the kinetic equation. Moreover, this form of the collision integral is used for solving more complex problems [4,
5].

Substitution of (14)–(17) into definition (18) leads to the system of integral equations

Mi (r) = 
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 √π
 ∫ 
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× ∑ 
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  Mj (r1) 
r1dr1

√r1
2 − r2 (1 − µ2)

with respect to the distribution function moments depending only on the distance to the particle center. And, by virtue
of (3), M3 = 0. Therefore, in reality, it is necessary to solve a system of two equations, and the third equation can be
used to check the accuracy of the results obtained.

It should be noted that the idea of transforming the Boltzmann equation into a system of integral equations
with respect to the distribution function moments was used in considering similar problems in [9, 10]. To solve the
system formed, the authors of [9, 11] used the variation method. In so doing, the trial function was chosen from the
condition of accurate asymptotic behavior of macroscopic parameters in the gas-dynamic region. As a result, the heat
flux was given by the relation q = C1

 ⁄ r2, which is really fulfilled (by virtue of the energy conservation law), whereas
the temperature fields and the concentrations were determined in the form T = C2

 ⁄ r and n = C3
 ⁄ r, which holds only at

a large enough distance from the particle. The constants Ci were calculated from the minimum condition of the corre-
sponding functional. In [10], the Galerkin method was used. However, the trial function was chosen from analogous
considerations.

To describe the real character of the dependence Mi(r), we represent it in the form of the Chebyshev polyno-
mial series. Restricting ourselves to its first K terms, we write

Mi (r) =  ∑ 

j=0

K

 Aj
i
Tj (ξ (r)) .

By ξ(r) is meant a monotonic function whose values range from −1 to 1. The expansion coefficients are determined
by the condition

∑ 

l=0

K

 Tj (ξl) Tk (ξl) = 
K + 1

2
 (δ0j + 1) δjk ,   ξl = cos 

(2l + 1) π
2K + 2

 .

Such an approach makes it possible to do without the additional integration necessary in the Galerkin method, which
considerably reduces the time of calculations and, owing to this, permits increasing the number of polynomials held in
the expansion but requires a more thorough selection of the expansion parameter.

As the numerical analysis shows, the most optimum from the point of view of convergence is

Fig. 1. Heat flux as a function of the particle size at fixed values of αe for
∆Tw = T0. Dots show the values of Q obtained in [6] by direct integration of
the kinetic equation model under consideration at complete energy accommoda-
tion.

Fig. 2. Heat flux as a function of the energy accommodation coefficient at
fixed r.
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ξ = 1 − 2 exp (− β √r2 − R2  ) .

The quantity β was selected from the requirement that the majority of interpolation nodes lie in the region of the main
change in the distribution function.

Figures 1 and 2 show the values of Q calculated at ∆Tw = T0.
Of particular interest is determination of the macroscopic characteristics of gas, such as, for example, tempera-

ture distribution and molecular concentration:

δT

T0

 = √ 2

3
 M2

∗
 

αe

√π (1 − αe) Q
∗
 + αe

 
∆Tw

T0

 ,   
δn

T0

 = M1
∗
 

αe

√π (1 − αe) Q
∗
 + αe

 
∆Tw

T0

 .

From (19) it follows that in the case of a small particle,

δT
∗

T0

 = √ 2

3
 M2

∗
 = 

1

2
 









1 − √1 − 
R

2

r
2  









  + RνfT , (20)

δn
∗

n0

 = M1
∗
 = − 

1

4
 









1 − √1 − 
R

2

r
2  






  + Rνfn . (21)

The first terms in (20), (21) describe the distribution of the quantities under consideration at distances comparable to
the mean free path and are independent of the properties of the gas. The functions fT and fn are expressed in terms of
integrals entering into (19) and determine the transition to the gas-dynamic solution

δT
∗

T0
 = − 

δn
∗

n0
 = 

R
r

 .

The temperature and concentration distribution in the intermediate range of Rν is given in Fig. 3.

Fig. 3. Temperature (a) and concentration (b) distribution curves of gas mole-
cules at fixed R. Horizontal dashed lines note values in the immediate vicinity
of the particle surface.
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NOTATION

V and C, thermal velocity and its corresponding dedimensionalized velocity of gas molecules (subscript r de-
notes the radial projection); r, distance from the particle center to the point being considered; q and Q, heat flux and
dedimensionalized heat flux; k, Boltzmann constant; m, mass of gas molecules; κ, heat-conductivity coefficient; R,
particle radius; Tw, temperature of the particle surface; T0 and n0, unperturbed values of the temperature and concen-
tration of gas molecules; f0, equilibrium (Maxwellian) distribution function; ϕ, correction to the equilibrium distribu-
tion function; I(ϕ), integral collision operator; Tr and Φr, temperature and distribution function of molecules reflected
from the particle surface; Ei and Er, dimensionless value of energy brought by incident molecules and carried away
by molecules reflected from the particle; Φw, nw, and Ew, distribution function, concentration, and value of energy
which would be carried away by molecules reflected from the particle with the temperature of its surface; αe, energy-
accommodation coefficient; ∆, difference between the values of the corresponding characteristics at the particle surface
and at infinity (∆T = Tr − T0); δ, difference between the local values of thermodynamic parameters (δT = T(r) − T0); Ai

j,
Ii, Ki, Hi, Mi, Pi, ξi, ϕi, F, fT, fn, β, µ, ν, auxiliary quantities; Tj, Chebyshev polynomial; δij, Kronecker symbol. Sub-
scripts: r, reflected; i, input energy; w, wall (solid surface) from which gas molecules are reflected; e, energy; 0, val-
ues of gas characteristics at an infinite distance from the particle surface.
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